Accurate Lower Bounds on Two-Dimensional Constraint Capacities From Corner Transfer Matrices

نویسندگان

  • Yao-ban Chan
  • Andrew Rechnitzer
چکیده

We analyse the capacity of several two-dimensional constraint families — the exclusion, colouring, parity and charge model families. Using Baxter’s corner transfer matrix formalism combined with the corner transfer matrix renormalisation group method of Nishino and Okunishi, we calculate very tight lower bounds and estimates on the growth rates of these models. Our results strongly improve previous known lower bounds, and lead to the surprising conjecture that the capacity of the even and charge(3) constraints are identical.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper Bounds on Two-Dimensional Constraint Capacities via Corner Transfer Matrices

We study the capacities of a family of two-dimensional constraints, containing the hard squares, non-attacking kings and read-write isolated memory models. Using an assortment of techniques from combinatorics, statistical mechanics and linear algebra, we prove upper bounds on the capacities of these models. Our starting point is Calkin and Wilf’s transfer matrix eigenvalue upper bound. We then ...

متن کامل

v 2 1 7 D ec 1 99 3 Infinite dimensional symmetry of corner transfer matrices

We review some of the recent developments in two dimensional statistical mechanics in which corner transfer matrices provide the vital link between the physical system and the representation theory of quantum affine algebras. This opens many new possibilities, because the eigenstates may be described using the properties of q-vertex operators. Infinite dimensional symmetry of corner transfer ma...

متن کامل

Power-law Bounds on Transfer Matrices and Quantum Dynamics in One Dimension

We present an approach to quantum dynamical lower bounds for discrete one-dimensional Schrödinger operators which is based on power-law bounds on transfer matrices. It suffices to have such bounds for a nonempty set of energies. We apply this result to various models, including the Fibonacci Hamiltonian.

متن کامل

Some inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm

Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012